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Mode-I fracture in a nonlinear lattice with viscoelastic forces
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We study mode-I fracture in a viscoelastic lattice model with a nonlinear force law, with a focus on the
velocity and linear stability of the steady-state propagating solution. This study is a continuation both of the
study of the piecewise-linear model in mode I, and the study of more general nonlinear force laws in mode-III
fracture. At small driving, there is a strong dependency of the velocity curve on the dissipation and a strong
sensitivity to the smoothness of the force law at large dissipation. At large driving we calculate, via a linear
stability analysis, the critical velocity for the onset of instability as a function of the smoothness, the dissipation
and the ratio of lattice spacing to critical extension. This critical velocity is seen to be very sensitive to these
parameters. We confirm our calculations via direct numerical simulations of the initial value problem.
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I. INTRODUCTION

The problem of extensional~mode-I! fracture has re-
ceived increasing attention in the physics community in
last decade@1#. The experiments in amorphous materia
done by Fineberget al. @2# and in ordered materials b
Hauchet al. @3#, showing interesting dynamical behavior fo
large velocity cracks have been at the center of this grow
interest. From a theoretical point of view, the singularities
the crack tip associated with continuum treatments of
crack make the problem challenging. The presence of th
singularities necessitates a treatment of the crack tip at
microscopic level, the singularities being regularized by
small scale dynamics. One line of attack on this proble
initiated by Slepyan@4#, has been through the study of lattic
models of cracks. These lattice models are simpler than
atomistic simulations@5# in that the connectivity of the atom
is specified from the beginning, and so dislocations are
cluded.

Much progress has been made in understanding ste
state propagation of cracks in lattice systems using an ide
brittle piecewise-linear force law@4,6–15#. Here the particles
interact with Hookean springs, which break at some criti
extension, after which they exert no force. With the
piecewise-linear interactions, the model admits an anal
solution via the Wiener-Hopf technique. This solution h
been carried out both for mode-III and mode-I cracks,
both finite width and infinitely wide systems, with and with
out dissipation~Stokes or Kelvin type!. There have also bee
some recent results on mode-II cracks, with possible
evance for an understanding of friction@15#

The piecewise-linear model, despite its analytic simp
ity, exhibits some undesirable features@10#. For small dissi-
pation, the solutions are inconsistent at small velocities
bonds on the crack surface which are assumed to crac
some specific time in fact are seen to reach the critical
placement and hence crack earlier. At large velocities,
analytic solutions are again inconsistent, this time due to
breaking of additional bonds off the nominal crack surfa
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Beyond this point, the analytic methods are unable to tel
anything about the true dynamics of the system. An ad
tional limitation of the piecewise-linear force law is that
greatly complicates the task of constructing a linear stabi
treatment of the steady-state crack. This is due of cours
the discontinuous nature of the force law.

For the case of mode-III fracture, Kessler and Levine@16#
studied a lattice model with a family of continuous nonline
force laws labeled by a tunable smoothness parametea.
Such continuous forces should presumably more clos
model the actual physical situation. With this lattice mod
they investigated both arrested cracks@17# and propagating
cracks@16#. Consistent steady-state solutions were found
all driving; the previously discovered inconsistent solutio
at large driving of the piecewise-linear limit were convert
to consistent but linearly unstable solutions for the contin
ous force law.

In this paper we will study mode-I fracture with a suitab
adaptation to vector forces of this class of continuous fo
law. We shall study steady-state solutions of the model b
for small and large driving, and their dependence on
dissipation, the critical bond extension~relative to the lattice
constant!, and smoothness. Our results will be compar
with both the piecewise-linear limit mode-I calculations@10#
and the continuous force mode-III analysis@16#. We shall
also study the instabilities of the theory at large driving, fin
ing a number of transitions between dominant modes a
function of dissipation; these findings will be confirmed b
direct numerical simulations. We will also briefly consid
the nature of the dynamics, postinstability. Finally, we sh
draw some conclusions and discuss directions for further
search.

II. MODEL AND GENERAL METHODOLOGY

In this paper we study extensional~mode-I! cracks in a
nonlinear, two dimension hexagonal lattice model. Ma
points located at the lattice sites are coupled to their
nearest neighbors by nonlinear, viscoelastic central for
©2002 The American Physical Society26-1
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The force that particle two exerts on particle one is taken
be

fW1,25~r 1,22a!
11tanh@a~«2r 1,2!#

11tanh~a!
r̂ 1,2, ~1!

where a is the lattice scale,rW1,25xW22xW1 ,r 1,25urW1,2u is the
distance between the atoms andr̂ 1,25rW1,2/r 1,2. The thresh-
old « is the distance between the atoms at which the sp
can be considered to break.a is a parameter that determine
the smoothness of the potential. In the limita→` the force
becomes perfectly brittle, dropping immediately to 0 asr 1,2
exceeds«. Decreasinga smoothes the force, so that it de
cays away over a distance 1/a. Now the bonds never crac
totally, there is always some~exponentially small! force,
even at larger 1,2. Note that, compared with the similar forc
law studied at mode III@16#, this model has an additiona
parameter, namely,a/« the ratio of the lattice constant to th
breaking extension; this parameter governs the exten
which the force direction changes as the displacement gro
Only in the joint limit a→`, a/«→` do we recover the
piecewise-linear force law studied analytically for mode
fracture by Kulamekhtova, Saraikin, and Slepyan@6#,
Marder and Gross@7# and Pechenik, Kessler, and Levin
@10#, and simulationally by Plaet al. @11,12# and Martin
et al. @13#. In the following we choose our length scale su
that «5a11.

In addition to the purely conservative force, we introdu
a Kelvin-type viscosity with a viscosity parameterh with the
force law @8–10,16,18#,

gW 1,25hk1,2~vW 1,2• r̂ 1,2! r̂ 1,2 ~2!

wherevW 1,25vW 12vW 2 andk1,2 is an effective spring constant

k1,25 f 1,2/~r 1,22a!. ~3!

These forces define our model. We can now write the eq
tion of motion for the displacementuW of a mass point away
from its lattice position:

d2uW ~xW !

dt2
5 (

x̄8Pnn
~ fWxW ,xW81gW xW ,xW8!. ~4!

We work on a hexagonal lattice with 2N12 rows in they
direction, indexed byj 52N, . . . ,N11. The rows are sepa
rated by a distanceaA3/2, so thatyj5(2 j 21)aA3/4. We
apply a constant displacementuW 56D ŷ to the topmost and
bottommost rows. The~metastable! uncracked state is that o
uniform strain

uW U~x,yj !5
2 j 21

2N11
D ŷ. ~5!

In the equilibrium cracked state, the upper half of the ro
haveuW 51D ŷ, and the lower halfuW 52D ŷ.

Initially, we will be interested in the case of steady-sta
cracks where the displacement has the Slepyan fo
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uW (t,x,y)5uW (t2x/v,y) wherex,y label the position of a par-
ticle on the lattice, andv is the crack propagation spee
@4,6#. This ansatz reduces the problem to one of solving
the time development of the displacement for just 2N par-
ticles, i.e., one particle on each of the unconstrained rows
addition, we focus on symmetric cracks so we need to c
sider just one side of the lattice, imposing the symme
condition: uy(t,y)52uy@ t2a/(2v),2y# and ux(t,y)
5ux@ t2a/(2v),2y#.

As opposed to the previous analyses done in
piecewise-linear limit (a,a→`) @10#, here with finitea,a
we must resort to a numerical procedure@16#. Specifically,
we discretize time using a small but finitedt, and further
limit 2T<t<T. This reduces the problem to a set
2N(2T11) coupled equations. Since the equations of m
tion are dependent only on nearest neighbors, the system
a banded structure. The equations of motions are nonlin
so we use Newton’s method to solve the problem, using s
dard subroutines for solving banded matrices to find
Newton update. Now, for each givenv of the crack, we want
to find the driving displacementD. We have 2N(2T11)
11 unknowns~the N vector functions for the entire time
range plusD); this is one more than the number of equation
reflecting the time-translation invariance of the sought-a
solution. Thus we add an additional equation fixin
uy5A3/4(0)5const to lift the degeneracy. Let us note that
can be shown that the discretized problem has one m
linear mode that diverges asx→2` than diverges atx
→`. To treat this, we enforce the equation of motion fo
2T2dt<t<T2dt whereas the variable run from2T<t
<T @8#. The system then has 2N(nb13)22 bands below
the diagonal and 2N(nb21)13 upper bands, wherenb is a
even number withv5a/(nbdt).

The only remaining technical issue is that the system
presented does not have a completely banded structure d
the fact that many equations depend onD. This problem can
be circumvented using the algorithm of Kessler and Lev
~see the Appendix of Ref.@16#!.

III. THE SMALL VELOCITY REGIME

It is reasonable to expect that smoothing out the poten
can have a large effect in the small velocity regime. In p
ticular, the fact that solutions in the piecewise-linear lim
become inconsistent at small enough velocity means
making a finite must make a significant difference. Fo
mode III @16#, decreasinga eliminated the oscillations in the
v(D) curve, in accord with this reasoning; but, the oscil
tions were already not present at large enoughh and thus
changinga has almost no effect on those steady-state curv

Here for mode I we find a somewhat different pictur
First we present in Figs. 1~a!–1~c! a graph ofv versusD for
the steady-state solution.v is normalized with respect to th
Rayleigh surface wave speed, the limiting crack speed~in the
N→` limit ! as the elastic field has to propagate along
crack surface:CR5(32A3)1/2a/2.0.563a. D is normal-
ized by the Griffith value,DG , the value for which fracture
is energetically allowed. This value is a function ofa,a, and
6-2



MODE-I FRACTURE IN A NONLINEAR LATTICE WITH . . . PHYSICAL REVIEW E66, 016126 ~2002!
FIG. 1. ~a!–~c! Dependence ofv/cR on D/DG for a55, 15, and 100, forh50.25, 1, and 3.N53, dt50.1, anda54. In ~c! we present
data also fora58.
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of courseN. Data is presented forN53 because computing
the very low velocity solutions is very hard at largeN, due to
the bandwidth that scales asN/v. We do not expect the pic
ture at largerN to be qualitatively different@10#.

At small h the curves have oscillations for alla, unlike
the mode-III case, where oscillations were present only
largea. At largea, in both cases the graphs are qualitative
similar to those obtained directly in the piecewise-line
limit ~PLL!, though the largea curves do not actually con
verge to those curves. This is due to the aforementioned
that the solutions of the PLL are actually inconsistent
small velocity whereas the solutions of the finitea model are
always well defined@7,10,16#. As we increaseh the oscilla-
tions disappear and the curves become smoother. This be
ior, as can be seen in theh51 data@Fig. 1~b!#, happens for
all a, but is especially pronounced for the smallera ’s as
expected. These trends are also seen in the mode-III
@16#. As we increaseh to still higher values, for example
h53 @Fig. 1~c!#, a maximal velocity can be seen at smalla.
The existence of a maximal velocity in steady-state crack
a general feature, and will be discussed at length in the
lowing section on the large velocity regime. Here we ju
note that for largeh and smalla, the maximal velocity can
be quite low, e.g.,vmax.0.25CR at a55, a54, h53, and
decreases for decreasinga. This behavior has no parallel i
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the mode-III case. At smallD, decreasinga increases the
velocity, but for largeD the situation is reversed, with th
curves with the smallera having lower velocity. This is a
result of the fact that in our nonlinear potential the bon
never really break and continue to impede the crac
progress. On the other hand, at smallD, smalla weakens the
lattice trapping effect, resulting in larger velocity than f
largera.

We still have to address the question of why the curv
oscillate at lowa for small h, in contradistinction to the
mode-III case@16#. It is interesting to consider~see Fig. 2!
the bond extension and the bond force for a representa
small velocity case,v50.148CR . In the piecewise-linear
case at smallh for both mode I and mode III the underdam
ing of the backward running waves leads to precracki
This means that the bond extension rises above unity«
2a51) before t50 and then comes back to unity befo
cracking once and for all@7,8#. For finite a, while there
cannot be any precracking~we do not have to postulate i
advance when a bond will break!, there is a remnant of this
tendency. After cracking, the bond extension first rises a
then falls to a value close to the critical extension befo
rising again and then permanently leaving the region clos
critical extension. This force oscillation is ultimately what
responsible for the oscillations in thev(D) plot. This situa-
6-3
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FIG. 2. Bond extension~a! and force~b! along crack surface versust, for a55, 15, and 100. In both figures,N53, h50.25, v
50.148, anddt50.1033.
e
th

nt

s
ve

th
th
is
in
n

an
re
-

s

g
g
e

s
n

of

d

s
rg
s

ol-
lly
ns
c-
ted,
be
an

es

es-
ty
ty
e

tion is very different from that in mode III, where for finit
a, the bond extension increases monotonically through
critical region.

We checked also the effect of the lattice scale constaa
on the curves for the small velocity regime ath51, a
515. We present the data on Fig. 3. We see that there i
dramatic effect of the lattice scale constant in the small
locity regime. There is a backward branch for alla at about
the same velocity, with the effect accentuated at largea.

IV. LARGE VELOCITY REGIME

In the large velocity regime, it is again clear that smoo
ing the potential must make significant modifications to
steady-state solutions, as it is known that in the piecew
linear model the solution is inconsistent due to the break
of bonds off the assumed crack surface. This inconsiste
was demonstrated both for mode III in a square lattice
mode I in a hexagonal lattice, the case treated he
@7,8,10,19#. In mode III, the inconsistency in the PLL is con
verted to a linear instability for the finitea model.

We present in Fig. 4~a! large velocity steady-state curve
for the caseN510 for several values ofa. The effect of
changinga is rather dramatic. Fora530, the velocity grows
smoothly with D. For a5100 the curve still grows but a
little bit less smoothly with some small kinks appearin
There is no sign of a maximal velocity, at least for the ran
of D investigated; the maximal velocity, if it exists, is clos
to the Rayleigh wave speed. As we go lower ina, at a
515, and more significantly ata57 anda55, the curves
lie significantly below those for the largera. We see here a
maximal velocity far below the Rayleigh wave speed. The
changes are a direct sign of the involvement of the additio
bonds in the crack progression; in particular, the creation
local maximum of the velocity as a function ofD is due to
the fact that this involvement grows withD and can over-
compensate for the natural tendency of the crack to spee
as the applied stress increases.

In the previous figure@Fig. 4~a!#, the lattice scalea was
kept fixed. If we increasea, the maximal velocity decrease
and is no longer near the Rayleigh wave speed even at la
a. This is presented in Fig. 4~b!, where we show the curve
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for a515 for differenta. Thus the maximum velocity is a
strongly varying function of botha and a. It will turn out
from the linear stability analysis to be presented in the f
lowing section that there exists an instability that typica
sets in slightly after the maximal velocity point; this mea
that the instability point will also be a strongly varying fun
tion of the parameters. In the experiments, it should be no
the critical velocity for the onset of instabilities appears to
material dependent@1#. Thus, this strong dependence is
encouraging sign. Also, for largea anda, the maximal ve-
locity is very close to the velocity at which the PLL becom
inconsistent, as expected.

V. STABILITY ANALYSIS

Given the steady-state solution, we can proceed to inv
tigate its linear stability. We will focus here on the instabili
in the high velocity regime; it is clear that in the low veloci
regime where thev(D) curve is backward, the solutions ar
unstable. We take the form

uW i~ t !5uW i
(0)~t!1evx/adW ui~t!, ~6!

where t is the traveling wave coordinatet5t2x/v, and
uW i

(0)(t) is the steady-state displacements for rowi that we

FIG. 3. Dependence ofv/cR on D/DG for a54, 10, and 75, for
h51. N53, dt50.13, anda515.
6-4



MODE-I FRACTURE IN A NONLINEAR LATTICE WITH . . . PHYSICAL REVIEW E66, 016126 ~2002!
FIG. 4. ~a! v/cR versusD/DG for N510, h50.25, anda54. Data are presented for the casesa55, 7, 15, 30, and 100.~b! v/cR versus
D/DG for N510, h50.25, anda515. Data are presented for the casesa54, 10, and 75.
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have found in the preceding section. We assumedu!1 and
expand the equations of motion to linear order. Note t
evx/a5evv(t2t)/a; thus, stability requires Re(v),0, and
stable perturbations decay ahead of the crack in the mo
frame of reference.

Substituting Eq.~6! into the equations of motion, Eq.~4!
we get the linear equations:

d2

dt i
2
dW ui~t i !5 (

j Pnn
e2v(xj 2xi )/aS dW uj•

]

]uW j
(0)~t j !

D
3~ fWxW i ,xW j

1gW xW i ,xW j
!, ~7!

where f and g are the forces defined in Sec. II andt i5t
2xi /v.

To find the possible values ofv we proceed as follows
First we impose the boundary conditionsdW ui(t)50 for the
constrained rowsi 52N, N51. AlsodW ui(t)50 for anyx’s
that correspond to times before or after the limiting values
t that were selected to build the steady-state solution. S
ond, we add a normalization condition by settingŷ•dW u1(0)
51; there are now as many equations as variables if
includes v among the latter. Then, as in the steady-st
solution, we need to solve a set of~now complex! linear
equations with an almost banded structure, where nowv is
the variable that destroys the banded structure. To proc
we choose some~complex! value ofv, and temporarily ig-
nore the actual equation of motion for they component of
dW u1(0), replacing it by the aforementioned normalizatio
condition. We then solve the banded system of linear eq
tions by standard techniques. We still have left the equa
of motion we have dropped, which serves as a complex m
match function; the zeros of this mismatch function det
mine the eigenvalues ofv. We are of course interested in th
eigenvalue with largest real part, which is the domina
mode.

When we solve the system of equations for the lin
stability analysis, we do not impose any symmetry on
problem; i.e., we use the complete lattice encompassing
sides of the crack. Let us note that any time we find a co
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plex root of v, with eigenfunctionsdW u, there is always an
equivalent solution generated by the transformation:

Im v→2p2Im v,

dW ui~t!→dW ui~t!* ~even rows!, ~8!

dW ui~t!→2dW ui~t!* ~odd rows!.

By even and odd we mean the serial number of the r
for example, row 0 is the first even row. This alternation
due to the shift ofa/2 for thex values in neighboring rows

To test our stability analysis we check whether our line
equations reproduce the time-translation mode that shoul
always be present with eigenvaluev50, and eigenfunction

dW ui~t!5
d

dt
uW i

(0)~t!/
d

dt
@ ŷ•uW 1

(0)~0!#. ~9!

Given our discretedt, we found the eigenvalue of the tran
lation mode to lie not exactly at zero, but still quite sma
e.g., typicallyv;1024 for dt;0.1. Note that compared to
the case of mode III, the matrix here is larger as we have
components of the displacement field. Furthermore, the c
cal velocity here is much smaller than the mode-III case,
nb is larger. It was therefore difficult to work atN510 as we
did for the steady-state solution. The stability matrix is co
plex as opposed to real, and we do not impose any symm
on the problem; hence the matrix is now four times bigg
than in the steady-state solution case. We chose to wor
N54 to reduce memory consumption.N54 is of course not
good enough to give us quantitative results for a macrosco
system, but we expect the qualitative picture to remain
same.

We focus first on the case ofa515, a575, and h
50.25. We chose a large value ofa because the curves ar
much smoother than for smalla. In addition, this choice
allows for a more meaningful comparison to the results
the critical velocity for the PLL@10#. In Fig. 5~a! we present
the steady-statev(D) curve, along with the correspondin
curve for N510. The overall similarity of the two curves
with an overall shift in velocity of about 5%, lends support
6-5
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FIG. 5. ~a! Thev(D) curve for the case ofN54, h50.25,a515, anda575. We also show theN510 curve with the same paramete
to demonstrate the effect of changingN. ~b! and ~c! Eigenvalues for the stability problem, withN54, h50.25, a515, anda575. The
calculation was done with 2T1151000 andnb520. Re(v) is shown in~b!, Im(v) in ~c!.
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our expectation that theN54 system is qualitatively simila
to those with largerN. In Fig. 5~b! we exhibit the real parts
of the two most important eigenvalues as a function ofD,
and in Fig. 5~c! the imaginary parts of the eigenvalues. W
can see by looking at the steady-state solution curve and
linear stability curve that the point of instability lies slight
after the maximum in thev(D) curve. This is reasonabl
because both the instability and the maximum are sign
additional bond breaking, and so should occur close toge
In the following section we will verify this behavior via di
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rect simulation. The second interesting point is that in all o
solutions there is a stable mode that almost does not cha
with D, and there is a quickly varying mode that takes
place as the dominant mode and crosses over to pos
Re(v).

In Fig. 6 we show a typical eigenfunction~for the quickly
varying mode! from the linear stability analysis. Figure 6~a!
presents the real part of they component of the eigenfunctio
for the two rows on either side of the crack surface (y5
6aA3/4) as a function of the traveling wave coordinatet.
FIG. 6. Eigenfunction for stability problem, withN54, h50.25, a515, anda575: ~a! y component, Reŷ•dW u0,1; ~b! x component,

Rex̂•dW u0,1. Both figures were done with 2T1151000, nb520, anddt50.13.
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MODE-I FRACTURE IN A NONLINEAR LATTICE WITH . . . PHYSICAL REVIEW E66, 016126 ~2002!
FIG. 7. ~a! The v(D) curve for the case ofN54, h50.75, a515, anda575. ~b! Re(v) of eigenvalue for stability problem, withN
54, h50.75, a515, anda575. The calculation was done with 2T1151000 andnb520.
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We see that in this case the most unstable eigenfunctio
antisymmetric about the crack surface. The eigenfunction
cays slowly downstream and very rapidly upstream of
crack tip. In Fig. 6~b! we show the real part of thex compo-
nent for the two rows about the midline. Here, both upstre
and downstream of the crack tip, this component of
eigenfunction decays very slowly. Moreover, it is here sy
metric about the midline; the two curves overlap. We note
passing that there is a large class of possible symmetrie
the eigenfunctions. In addition to the eigenfunction with a
tisymmetricy component and symmetricx component, there
also exist eigenfunctions with symmetricy component and
antisymmetricx component. The symmetry of the imagina
part of the eigenfunctions is also variable, and not connec
in any special way to the symmetry of the real part. Th
while imposing a specific symmetry reduces the size of
matrix to be solved, it means that the calculation has to
repeated for each type of possible symmetry.

We next investigated a higher value ofh, h50.75. The
steady-state curve, as we see in Fig. 7~a!, rises to a maximum
and then it comes back around in a lower branch. In
linear stability analysis for thish, Fig. 7~b!, we see that the
point of instability is exactly at theD maximum; all the
points on the backward branch are unstable. This is of co
a generic feature of propagating systems. At theD maxi-
mum, the velocity of the solution is indeterminate to line
order, implying a zero mode at this point. This zero mo
represents the crossing over into instability of some mode
the system. When we decreaseh the backward branch come
back less rapidly, as shown in Fig. 8 forh50.5. Clearly at
some smallerh this turnaround vanishes altogether, and
recover the situation ath50.25, where no maximumD is
seen. The linear stability analysis for theh50.5 reveals that
the maximalD is no longer the location of the first instabi
ity; there is another mode that goes unstable before
point.

We present in Fig. 9~a! a curve of the critical velocity for
the onset of the instability as a function ofh. Given the
correlation we found between the critical velocity for inst
bility and the point of maximalD for sufficiently largeh, we
extended the graph to higherh by calculating the velocity a
the D maximum. The critical velocity for smallh increases
with h, as in the piecewise-linear model~where here the
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critical velocity denotes the onset of inconsistency!; even the
values are similar. As we increaseh further, the critical ve-
locity decreases, again just like the piecewise-linear resu
due there to the breaking of a horizontal bond@10#. We fur-
ther see that the critical velocity extrapolates to a finite va
at h50. Thus, there is stable propagation below this criti
velocity at zero dissipation in contradiction to the claim
Pla et al. @11#. We believe that the instabilities they saw
their simulations were finite amplitude effects engendered
the initial conditions. Indeed, we have generated sta
propagating solutions ath50 via direct simulation~see the
following section!.

Note that in the mode-I case as opposed to the mode
case@16#, Im(v) at the point of instability is not close top.
Therefore, there is no parallel to the period doubled non
ear state found in that system. The critical Im(v) here varies
strongly with h. We present in Fig. 9~b! the Im(v) at the
point of instability as a function ofh. We see two transitions
between dominant modes; somewhere in the range 0.75,h
,0.83, the critical Im(v) becomes zero, as it must if th
transition is directly connected to the saddle-node beha
of the steady-state curve. At lowerh, e.g., h50.5, it was
about 2.0, as mentioned above. Note that this transitio
sharp; for example, ath50.83 we still have the mode with
Im(v).2 but the Im(v)50 mode goes unstable first. W
also have a transition between dominant modes ath.0.4,

FIG. 8. Thev(D) curve for the case ofN54, h50.5, a515,
anda575.
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FIG. 9. ~a! The critical velocity from the linear stability analysis, normalized by the Rayleigh wave speed, as a function ofh. Data are
presented fora515, a575, andN54. ~b! Im(v) of the eigenvalue at the critical velocity as a function ofh.
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the modes having very different Im(v). At higher h we
checked the critical Im(v) by the direct simulation~again,
see the following section! and found that it remains zero.

VI. COMPARISON TO SIMULATION

To check our results, both for the steady-state solution
for the linear stability analysis we have implemented a dir
numerical simulation of the initial value problem. The
simulations are also useful for investigating the dynam
after the point of instability. Our system is a hexagonal l
tice with 2N11 rows and with a finite numberL of mass
points in each row. The top and bottom rows are constrai
to have a displacement6D ŷ. The initial conditions for the
displacement and velocity for the lattice were construc
from the steady-state solution that we already have fou
with the initial crack tip placedL/3 from the left edge. We
solve the equations of motion by an Euler scheme, tak

vW t1dt5vW t1(nn( fW1gW )dt and xW t1dt5xW t1vW t1dtdt. We mea-
sured the velocity of the crack by monitoring the bond e
tension. The crack was considered to have translated forw
when both bonds connecting a given mass point to its ne
bors across the midline exceeded the critical extension«
01612
d
t

s
-

d

d
d,

g

-
rd
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5a11, and the velocity determined from the timeDt be-
tween such translation events,v5a/Dt. This criterion of ve-
locity is of course somewhat arbitrary because cracking
our smooth potential is a reversible process. Note tha
produce a true steady-state crack we need to fixa/v so that it
is an integer multiple ofdt. Otherwise we would introduce
oscillations inDt due to the incommensurability. Via thi
procedure, we obtained excellent agreement~with four digit
accuracy! between the simulated and calculated results
the v(D) relationship. As we increaseD, we can follow the
v(D) curve and we obtain from the simulation all the poin
of the curve including those around thev maximum. When
we get exactly to the point of instability as predicted fro
the linear stability analysis, additional bond breaking occu
and the velocity in the simulation drops down below t
steady-state curve.

The numerical simulation can provide a strong check
the details of the stability analysis. We can measure
eigenfrequency by perturbing one mass point on the lattic
the vicinity of the crack tip, and measuring the subsequ
time development of the perturbation. We track the bo
extension of the breaking bond at the moment of cracki
Because of the finiteness ofdt this is always somewha
of

FIG. 10. ~a! Bond extension at breaking as a function of positionx along the crack surface. HereN54, h50.25, a515, anda575.

D/DG51.6305, dt50.125. The fitted curve is 1.02110.01e20.025x sin(0.565x13.5). ~b! Bond extension at breaking as a function
positionx after the point of instability forN54, h50.25, a515, anda575.
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MODE-I FRACTURE IN A NONLINEAR LATTICE WITH . . . PHYSICAL REVIEW E66, 016126 ~2002!
larger than«. This value oscillates, decaying in the stab
regime, and growing in the unstable regime. The data
then be fit to a formAevx/a andv compared to that produce
by the linear stability analysis. In Fig. 10~a! we can see the
results for the crack tip and if we perform the fitting, th
eigenvalue found here lies quite close to the eigenva
found in the linear stability analysis,v520.0243
10.5813i .

If we instead look at a point in the unstable regime, the
oscillations look like those presented in Fig. 10~b!. The os-
cillating part in the simulation fits well to the imaginary pa
of the linear stability eigenvalue. We note that throughout
unstable regime we can detect the presence of the squa
the unstable mode, giving rise to an additional nonlin
mode with a growth rate two times the value of the real p
of the eigenvalue.

When we increaseD past the point of instability, the ac
tual crack dynamics of the problem become increasin
complex. Direct numerical simulation can still be used

FIG. 11. ~a! The lattice showing the broken bonds forN
520, h50.1, a515, a575. D/DG51.875. ~b! D/DG52.1875.
~c! D/DG53.125.
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study crack development. We performed such a study us
N520. We see in Fig. 11 three examples of what can hap
in mode-I cracking after the point of instability, for increa
ing values ofD, all for the case of small dissipation. For th
smallestD, the crack tip meanders up and down off the m
line. For largerD, the crack starts to bifurcate@Fig. 11~b!#,
and at the highestD shown bifurcates many times and cr
ates a very complex cracking picture@Fig. 11~c!#. In all three
of these smallh cases, the crack arrests eventually. At lar
h, such ash51.2 and higher~see Fig. 12! the picture is very
different. Just above the point of instability the crack bifu
cates, with the two daughter tips propagating close to
edges of the system. These kinds of behavior appear to
very different from that seen in experiment, where there i
main crack propagating more or less straight in addition
daughter cracks on either side.

In the mode-III case, a crucial point that emerged from
detailed linear stability study was that the additional crack
bonds were always created behind the crack tip. There,
instability did not divert the main crack, but merely slowed
down temporarily as energy was diverted to create the s
branches@16,20#. Here in mode-I cracking, however, afte
the point of instability the crack tip itself changes directio
and the crack either bifurcates or deviates from the cent

VII. SUMMARY AND DISCUSSION

We have herein studied the steady-state crack, calcula
the v(D) curves both for small and large driving, and fo
small and large dissipation. For small driving with small d
sipation, we obtained oscillating curves for all finitea, indi-
cating a substantial velocity gap at small velocity. At lar

FIG. 12. The lattice showing the broken bonds forN520,
h51.2, a515, a575. D/DG52.578.
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SHAY I. HEIZLER, DAVID A. KESSLER, AND HERBERT LEVINE PHYSICAL REVIEW E66, 016126 ~2002!
dissipation, the curves are smooth, and vary significa
with a. At large driving, the maximal velocity exhibits
strong dependence on the smoothness and the value ofa/«.
For largeh, there is also a maximal driving as the cur
bends back forming a second branch, and beyond which
steady-state solution exists. For allh, the steady-state solu
tion undergoes a linear instability. For largeh, this occurs at
the maximal driving, and is a real instability. For smallh, the
instability set in slightly after the maximal velocity, and is
Hopf bifurcation. The velocity at the onset of instability in
tially increases withh, reaches a maximum ath.2 and
thereafter decreases for largerh. We note that the strong
variation of the velocity at the onset of instability with th
microscopic parameters does not accord with the naive
pectations based on the Yoffe continuum calculation@21# of a
change in the direction of maximal stress at some unive
velocity, independent of the microscopic dynamics. For
piecewise-linear model and small dissipation, where the p
cess zone is very small, the onset of instability is close to
Yoffe prediction @10#. This is reasonable, since then th
stresses at the crack tip cannot deviate too far from the c
tinuum stress fields due to the small process zone. In gen
y

y,

n
d

h.

ys
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however, this does not have to be the case, and as we
seen, the Yoffe criterion can be far from being quantitative
accurate. It also is not accord with the ansatz of Eshe
based on energy considerations@22#. We also compared ou
steady-state solution and linear stability analysis to dir
numerical simulations, obtaining excellent agreement.

We plan to extend our work to the case of biaxial loadin
where the material is strained in both thex andy direction.
This phenomena describes, for example, a popping of a
loon as described in Ref.@23#. We also plan to investigate
further the postinstability dynamics. Finally, we hope to u
the recently introduced@24# continuum regularization of tip
dynamics~based on the phase-field method! to unravel the
role that the lattice structure has in determining the form
the allowed instabilities.
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