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Mode-I fracture in a nonlinear lattice with viscoelastic forces
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We study mode-| fracture in a viscoelastic lattice model with a nonlinear force law, with a focus on the
velocity and linear stability of the steady-state propagating solution. This study is a continuation both of the
study of the piecewise-linear model in mode |, and the study of more general nonlinear force laws in mode-IIl
fracture. At small driving, there is a strong dependency of the velocity curve on the dissipation and a strong
sensitivity to the smoothness of the force law at large dissipation. At large driving we calculate, via a linear
stability analysis, the critical velocity for the onset of instability as a function of the smoothness, the dissipation
and the ratio of lattice spacing to critical extension. This critical velocity is seen to be very sensitive to these
parameters. We confirm our calculations via direct numerical simulations of the initial value problem.
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I. INTRODUCTION Beyond this point, the analytic methods are unable to tell us
anything about the true dynamics of the system. An addi-
The problem of extensionalmode-) fracture has re- tional limitation of the piecewise-linear force law is that it
ceived increasing attention in the physics community in thegreatly complicates the task of constructing a linear stability
last decade[1]. The experiments in amorphous materialstreatment of the steady-state crack. This is due of course to
done by Fineberget al. [2] and in ordered materials by the discontinuous nature of the force law.
Hauchet al.[3], showing interesting dynamical behavior for ~ FOr the case of mode-Ill fracture, Kessler and Le\ihé]
large velocity cracks have been at the center of this growin?tUd'ed a lattice model with a family of continuous nonlinear
interest. From a theoretical point of view, the singularities aforce laws labeled by a tunable smoothness parameter
the crack tip associated with continuum treatments of theSuch continuous forces should presumably more closely
crack make the problem challenging. The presence of theg@ode_l the gctual physical situation. With this lattice m_odel,
singularities necessitates a treatment of the crack tip at th@ey investigated both arrested cra¢ks] and propagating
microscopic level, the singularities being regularized by thecracks[16]. Consistent steady-state solutions were found at
small scale dynamics. One line of attack on this problemall driving; the previously discovered inconsistent solutions
initiated by Slepyari4], has been through the study of lattice at Iarge. driving of 'the piecewise-linear I!mlt were conver_ted
models of cracks. These lattice models are simpler than fuflo consistent but linearly unstable solutions for the continu-
atomistic simulation$5] in that the connectivity of the atoms 0US force law. _ _ _
is specified from the beginning, and so dislocations are ex- N this paper we will study mode-I fracture with a suitable
cluded. adaptation to vector forces of this class of continuous force
Much progress has been made in understanding stead{@w. We shall study steady—state solut_ions of the model both
state propagation of cracks in lattice systems using an ideallfr Small and large driving, and their dependence on the
brittle piecewise-linear force laj¢,6—15. Here the particles dissipation, the critical bond extensmjlrelatlve_ to the lattice
interact with Hookean springs, which break at some criticaconstant, and smoothness. Our results will be compared
extension, after which they exert no force. With theseWith both the piecewise-linear limit mode-I calculatidrig)]
piecewise-linear interactions, the model admits an analyti@nd the continuous force mode-Iil analy$i6]. We shall
solution via the Wiener-Hopf technique. This solution has@ls0 study the instabilities of the theory at large driving, find-
been carried out both for mode-Ill and mode-I cracks, fori"d @ number of transitions between dominant modes as a
both finite width and infinitely wide systems, with and with- function of dissipation; these findings will be confirmed by
out dissipation(Stokes or Kelvin type There have also been direct numerical simulations. We will also briefly consider
some recent results on mode-Il cracks, with possible relthe nature of the dynamics, postinstability. Finally, we shall
evance for an understanding of frictiphs] draw some conclusions and discuss directions for further re-
The piecewise-linear model, despite its analytic simplic-S€arch.
ity, exhibits some undesirable featufd®]. For small dissi-
pation, the solutions are incons?stent at small velocities, as II. MODEL AND GENERAL METHODOLOGY
bonds on the crack surface which are assumed to crack at
some specific time in fact are seen to reach the critical dis- In this paper we study extension@hode-) cracks in a
placement and hence crack earlier. At large velocities, tha@onlinear, two dimension hexagonal lattice model. Mass
analytic solutions are again inconsistent, this time due to thgoints located at the lattice sites are coupled to their six
breaking of additional bonds off the nominal crack surfacenearest neighbors by nonlinear, viscoelastic central forces.
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The force that particle two exerts on particle one is taken tqj(t,xly) = G(t—x/v,y) wherex,y label the position of a par-
be ticle on the lattice, and is the crack propagation speed
[4,6]. This ansatz reduces the problem to one of solving for
1+tant[a(s—r1'2)]: (1) the time development of the displacement for judt par-
1+tanH(a) M ticles, i.e., one particle on each of the unconstrained rows. In
- . addition, we focus on symmetric cracks so we need to con-
where a is the lattice scalef; ,=x,—X;,r1,=[r1J is the sider just one side of the lattice, imposing the symmetry
distance between the atoms and=r,,/r,,. The thresh- ~condition: u,(t,y)=—uy[t—a/(2v),—y] and u,(ty)
old ¢ is the distance between the atoms at which the spring-U[t—a/(2v),—y].
can be considered to break.is a parameter that determines ~As opposed to the previous analyses done in the
the smoothness of the potential. In the limit> the force ~ piecewise-linear limit &,a— ) [10], here with finitea,a
becomes perfectly brittle, dropping immediately to Orag ~ We must resort to a numerical procediité]. Specifically,
exceedss. Decreasingy smoothes the force, so that it de- we discretize time using a small but finitkt, and further
cays away over a distancedal/Now the bonds never crack limit —T<t<T. This reduces the problem to a set of
totally, there is always soméexponentially small force, 2N(2T+1) coupled equations. Since the equations of mo-
even at large; ,. Note that, compared with the similar force tion are dependent only on nearest neighbors, the system has
law studied at mode 11[16], this model has an additional @ banded structure. The equations of motions are nonlinear
parameter, namelw/« the ratio of the lattice constant to the SO we use Newton’s method to solve the problem, using stan-
breaking extension; this parameter governs the extent tgard subroutines for solving banded matrices to find the
which the force direction changes as the displacement grow$lewton update. Now, for each givenof the crack, we want
Only in the joint limit a—o, a/le—% do we recover the to find the driving displacemenh. We have N(2T+1)
piecewise-linear force law studied analytically for mode-l +1 unknowns(the N vector functions for the entire time
fracture by Kulamekhtova, Saraikin, and Slepy&8l, range plus\); this is one more than the number of equations,
Marder and Gros§7] and Pechenik, Kessler, and Levine reflecting the time-translation invariance of the sought-after
[10], and simulationally by Plaet al. [11,17 and Martin ~ solution. Thus we add an additional equation fixing
et al.[13]. In the following we choose our length scale suchUy- 34(0)=const to lift the degeneracy. Let us note that it
thate=a+1. can be shown that the discretized problem has one more
In addition to the purely conservative force, we introducelinear mode that diverges as— — than diverges ak
a Kei\/in_type Viscosity with a Viscosity paramet@iwith the —o0, To treat this, we enforce the equation of motion for

f1=(r1—a)

force law[8-10,16,18 —T—dt<t<T-dt whereas the variable run from T<t
<T [8]. The system then hasN{n,+3)—2 bands below
O10= 7Ky AV12T1 201 (2)  the diagonal and I8(n,—1)+ 3 upper bands, when, is a
even number withy =a/(nydt).
Wherel;m: v,—v, and ki, is an effective spring constant, The only remaining technical issue is that the system as
presented does not have a completely banded structure due to
ki o=T1,/(r o—a). (3 the fact that many equations dependfonThis problem can

be circumvented using the algorithm of Kessler and Levine
These forces define our model. We can now write the equasee the Appendix of Ref16]).
tion of motion for the displacement of a mass point away
from its lattice position:
.. Ill. THE SMALL VELOCITY REGIME
d?u(x)

= > (feo+gis). (4) It is reasonable to expect that smoothing out the potential
dt?>  Yemn ' can have a large effect in the small velocity regime. In par-
_ ) . ticular, the fact that solutions in the piecewise-linear limit
~ We work on a hexagonal lattice witi\2+ 2 rows inthey  pecome inconsistent at small enough velocity means that
direction, indexed by=—N, ... N+1. The rows are sepa- making « finite must make a significant difference. For
rated by a distancay/3/2, so thaty; = (2] —1)ay3/4. We  mode I11[16], decreasingr eliminated the oscillations in the
apply a constant displacememt = Ay to the topmost and v (A) curve, in accord with this reasoning; but, the oscilla-
bottommost rows. Thémetastableuncracked state is that of tions were already not present at large enougland thus

uniform strain changinga has almost no effect on those steady-state curves.
) Here for mode | we find a somewhat different picture.
JU(x y)= 2j—1 Af/ 5) First we present in Figs.(&)—1(c) a graph ofv versusA for
U 2N4+1T the steady-state solution.is normalized with respect to the

Rayleigh surface wave speed, the limiting crack spg@ethe
In the equilibrium cracked state, the upper half of the rowsN— o |imit) as the elastic field has to propagate along the
haveu= + Ay, and the lower halfi= —Ay. crack surface:Cr=(3— 3)*%a/2=0.56%. A is normal-
Initially, we will be interested in the case of steady-stateized by the Griffith valueAg, the value for which fracture
cracks where the displacement has the Slepyan fornis energetically allowed. This value is a functionafa, and
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FIG. 1. (a)—(c) Dependence af/cg on A/Ag for =5, 15, and 100, forp=0.25, 1, and 3N=3, dt=0.1, anda=4. In (c) we present
data also fora=8.

of courseN. Data is presented fdd=3 because computing the mode-Ill case. At smalh, decreasingy increases the
the very low velocity solutions is very hard at lalyedue to  velocity, but for largeA the situation is reversed, with the
the bandwidth that scales &8v. We do not expect the pic- curves with the smallerr having lower velocity. This is a
ture at largeN to be qualitatively differenf10]. result of the fact that in our nonlinear potential the bonds
At small 5 the curves have oscillations for all, unlike  never really break and continue to impede the crack’s
the mode-Ill case, where oscillations were present only foprogress. On the other hand, at snigllsmalla weakens the
large a. At large «, in both cases the graphs are qualitativelylattice trapping effect, resulting in larger velocity than for
similar to those obtained directly in the piecewise-linearlarger a.
limit (PLL), though the larger curves do not actually con- We still have to address the question of why the curves
verge to those curves. This is due to the aforementioned fadscillate at lowa for small %, in contradistinction to the
that the solutions of the PLL are actually inconsistent formode-Ill casg16]. It is interesting to considefsee Fig. 2
small velocity whereas the solutions of the finitenodel are  the bond extension and the bond force for a representative
always well defined7,10,14. As we increase; the oscilla-  small velocity casep =0.148g. In the piecewise-linear
tions disappear and the curves become smoother. This behasase at small for both mode | and mode 11l the underdamp-
ior, as can be seen in thg=1 data[Fig. 1(b)], happens for ing of the backward running waves leads to precracking.
all «, but is especially pronounced for the smalles as  This means that the bond extension rises above unity (
expected. These trends are also seen in the mode-lll casea=1) beforet=0 and then comes back to unity before
[16]. As we increasey to still higher values, for example, cracking once and for alf7,8]. For finite «, while there
n=3 [Fig. 1(c)], a maximal velocity can be seen at small cannot be any precrackingve do not have to postulate in
The existence of a maximal velocity in steady-state cracks iadvance when a bond will bregkhere is a remnant of this
a general feature, and will be discussed at length in the foltendency. After cracking, the bond extension first rises and
lowing section on the large velocity regime. Here we justthen falls to a value close to the critical extension before
note that for largey and smalle, the maximal velocity can rising again and then permanently leaving the region close to
be quite low, €.0.v 1ax=0.28Cr ata=5, a=4, »=3,and critical extension. This force oscillation is ultimately what is
decreases for decreasiag This behavior has no parallel in responsible for the oscillations in th€A) plot. This situa-
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FIG. 2. Bond extensioria) and force(b) along crack surface versus for =5, 15, and 100. In both figure®=3, =0.25, v
=0.148, anddt=0.1033.

tion is very different from that in mode IlI, where for finite for o=15 for differenta. Thus the maximum velocity is a
a, _the bond extension increases monotonically through th%trongly varying function of botlx anda. It will turn out
critical region. ) from the linear stability analysis to be presented in the fol-
We checked also the effect of the lattice scale consiant |oying section that there exists an instability that typically
on the curves for the small velocity regime gt=1, @  sets in slightly after the maximal velocity point; this means
=15. We present the data on Fig. 3. We see that there is n@at the instability point will also be a strongly varying func-
dramatic effect of the lattice scale constant in the small vetjgn of the parameters. In the experiments, it should be noted,
locity regime. There is a backward branch for alat about  the critical velocity for the onset of instabilities appears to be

the same velocity, with the effect accentuated at lage material dependerftl]. Thus, this strong dependence is an
encouraging sign. Also, for large anda, the maximal ve-
IV. LARGE VELOCITY REGIME locity is very close to the velocity at which the PLL becomes

inconsistent, as expected.

In the large velocity regime, it is again clear that smooth-
ing the potential must make significant modifications to the V. STABILITY ANALYSIS
steady-state solutions, as it is known that in the piecewise-
linear model the solution is inconsistent due to the breaking Given the steady-state solution, we can proceed to inves-
of bonds off the assumed crack surface. This inconsistenctigate its linear stability. We will focus here on the instability
was demonstrated both for mode Il in a square lattice andh the high velocity regime; it is clear that in the low velocity
mode | in a hexagonal lattice, the case treated hereiregime where the (A) curve is backward, the solutions are
[7,8,10,19. In mode llI, the inconsistency in the PLL is con- unstable. We take the form
verted to a linear instability for the finita model.

We present in Fig. @) large velocity steady-state curves (1) =u(9(7) +e“¥a5u(7), (6)
for the caseN=10 for several values of. The effect of
changinge is rather dramatic. Far= 30, the velocity grows where 7 is the traveling wave coordinate=t—x/v, and
smoothly with A. For a=100 the curve still grows but a u©(7) is the steady-state displacements for rothat we
little bit less smoothly with some small kinks appearing.
There is no sign of a maximal velocity, at least for the range ——

of A investigated; the maximal velocity, if it exists, is close 05 s
to the Rayleigh wave speed. As we go lowerdn at « i

=15, and more significantly at=7 and«=5, the curves 04 T Z:w b
lie significantly below those for the larger. We see here a - — a=T75

maximal velocity far below the Rayleigh wave speed. These X03F

changes are a direct sign of the involvement of the additional 3

bonds in the crack progression; in particular, the creation of a 02| .
local maximum of the velocity as a function d&f is due to I
the fact that this involvement grows with and can over- 0.1 s
compensate for the natural tendency of the crack to speed up T
as the applied stress increases. ' T . s P E—

In the previous figuréFig. 4(a)], the lattice scale was A/A,

kept fixed. If we increase, the maximal velocity decreases
and is no longer near the Rayleigh wave speed even at larger FIG. 3. Dependence af/cg on A/Ag for a=4, 10, and 75, for
a. This is presented in Fig.(d), where we show the curves »=1. N=3, dt=0.13, anda=15.
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FIG. 4. (a) v/cg versusA/Ag for N=10, »=0.25, anda=4. Data are presented for the cases5, 7, 15, 30, and 10@b) v/cg versus
A/Ag for N=10, »=0.25, anda=15. Data are presented for the cases4, 10, and 75.

have found in the preceding section. We assuiuel and  plex root of w, with eigenfunctionssu, there is always an

expand the equations of motion to linear order. Note thagquivalent solution generated by the transformation:
e¥a=gwv(t=n/a: thys, stability requires Re()<0, and

stable perturbations decay ahead of the crack in the moving Imo—27—IMo,
frame of reference. ) R
Substituting Eq(6) into the equations of motion, E¢4) ou;(7)— ou;(7)* (even rows, (8)

we get the linear equations:
Sui(T)— — dui(1)* (odd rows.

2
d—zgui(ri)= > e“"(xj‘xi)’a( Su;- %) By even and odd we mean the serial number of the row,
7 jenn ﬁU,( )(Tj) for example, row 0 is the first even row. This alternation is
- - due to the shift ofa/2 for thex values in neighboring rows.
X 5T 9% ) () To test our stability analysis we check whether our linear
equations reproduce the time-translation mode that should be
wheref and g are the forces defined in Sec. Il ang=t  always be present with eigenvalue=0, and eigenfunction
— X lv.
i . : . d. d . .
_ To flnq the possible values @ wg_ptoceed as follows: Suy(7)= d—Ui(O)(T)/d—[Y'U(lo)(O)]- (9)
First we impose the boundary conditioas;(r) =0 for the T T

constrained rows=—N, N=1.Alsou(7)=0 foranyx's  gjyen our discretedr, we found the eigenvalue of the trans-
that correspond to times before or after the limiting values Oﬁation mode to lie not exactly at zero, but still quite small:

7 that were selected to build the steady-state solution. Sece-_g_ typicallyw~ 104 for 67~0.1. Note that compared to

ond, we add a normalization condition by settingou;(0)  the case of mode III, the matrix here is larger as we have two
=1, there are now as many equations as variables if ongomponents of the displacement field. Furthermore, the criti-
includes w among the latter. Then, as in the steady-stateal velocity here is much smaller than the mode-lil case, so
solution, we need to solve a set gfow complex linear  n, is larger. It was therefore difficult to work &t=10 as we
equations with an almost banded structure, where woi&  did for the steady-state solution. The stability matrix is com-
the variable that destroys the banded structure. To proceeglex as opposed to real, and we do not impose any symmetry
we choose somécompley value of w, and temporarily ig-  on the problem; hence the matrix is now four times bigger
nore the actual equation of motion for tiyecomponent of  than in the steady-state solution case. We chose to work at
5u4(0), replacing it by the aforementioned normalization N=4 to reduce memory consumptidi=4 is of course not
condition. We then solve the banded system of linear equagood enough to give us quantitative results for a macroscopic
tions by standard techniques. We still have left the equatiosystem, but we expect the qualitative picture to remain the
of motion we have dropped, which serves as a complex missame.
match function; the zeros of this mismatch function deter- We focus first on the case ok=15, a=75, and »
mine the eigenvalues af. We are of course interested in the =0.25. We chose a large value afbecause the curves are
eigenvalue with largest real part, which is the dominantmuch smoother than for smadl. In addition, this choice
mode. allows for a more meaningful comparison to the results for
When we solve the system of equations for the lineartthe critical velocity for the PLL{10]. In Fig. 5a) we present
stability analysis, we do not impose any symmetry on thethe steady-state(A) curve, along with the corresponding
problem; i.e., we use the complete lattice encompassing botturve for N=10. The overall similarity of the two curves,
sides of the crack. Let us note that any time we find a comwith an overall shift in velocity of about 5%, lends support to
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FIG. 5. (a) Thev(A) curve for the case dil=4, »=0.25, =15, anda=75. We also show thil=10 curve with the same parameters
to demonstrate the effect of changihg (b) and(c) Eigenvalues for the stability problem, with=4, »=0.25, =15, anda=75. The
calculation was done with 2+ 1=1000 andn,=20. Ref) is shown in(b), Im(w) in (c).

our expectation that thl=4 system is qualitatively similar rect simulation. The second interesting point is that in all our
to those with largeN. In Fig. 5b) we exhibit the real parts solutions there is a stable mode that almost does not change
of the two most important eigenvalues as a functiomof with A, and there is a quickly varying mode that takes its
and in Fig. %c) the imaginary parts of the eigenvalues. We place as the dominant mode and crosses over to positive
can see by looking at the steady-state solution curve and tHee(w).
linear stability curve that the point of instability lies slightly  In Fig. 6 we show a typical eigenfunctidfor the quickly
after the maximum in the(A) curve. This is reasonable varying mode from the linear stability analysis. Figurda
because both the instability and the maximum are signs gbresents the real part of tiyecomponent of the eigenfunction
additional bond breaking, and so should occur close togethefor the two rows on either side of the crack surfage=(
In the following section we will verify this behavior via di- +a\/3/4) as a function of the traveling wave coordinate

1L b) i

Eigenfunction
Eigenfunction
=

— y=i'\f§/4

N " | ) | " 1 " 1 "
-60 -40 -20 0 20 40 60
T

FIG. 6. Eigenfunction for stability problem, witN=4, »=0.25, =15, anda=75: (3) y component, Rg- 3u0v1; (b) x component,
ReX- 8ug ;. Both figures were done withT2+ 1=1000, n,=20, anddt=0.13.
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FIG. 7. (@ Thev(A) curve for the case dil=4, »=0.75, =15, anda=75. (b) Re(w) of eigenvalue for stability problem, witN
=4, »=0.75, «=15, anda=75. The calculation was done withir2-1=1000 andn,= 20.

We see that in this case the most unstable eigenfunction isritical velocity denotes the onset of inconsisteneven the
antisymmetric about the crack surface. The eigenfunction devalues are similar. As we increasgfurther, the critical ve-
cays slowly downstream and very rapidly upstream of thdocity decreases, again just like the piecewise-linear results,
crack tip. In Fig. 6b) we show the real part of thecompo-  due there to the breaking of a horizontal bdd@]. We fur-
nent for the two rows about the midline. Here, both upstreanther see that the critical velocity extrapolates to a finite value
and downstream of the crack tip, this component of theat »=0. Thus, there is stable propagation below this critical
eigenfunction decays very slowly. Moreover, it is here sym-velocity at zero dissipation in contradiction to the claim of
metric about the midline; the two curves overlap. We note inPla et al. [11]. We believe that the instabilities they saw in
passing that there is a large class of possible symmetries faheir simulations were finite amplitude effects engendered by
the eigenfunctions. In addition to the eigenfunction with an-the initial conditions. Indeed, we have generated stable
tisymmetricy component and symmetriccomponent, there propagating solutions ap=0 via direct simulationsee the
also exist eigenfunctions with symmetiyccomponent and following section).

antisymmetricx component. The symmetry of the imaginary ~ Note that in the mode-I case as opposed to the mode-IlI
part of the eigenfunctions is also variable, and not connectedase[16], Im(w) at the point of instability is not close to.

in any special way to the symmetry of the real part. Thus,Therefore, there is no parallel to the period doubled nonlin-
while imposing a specific symmetry reduces the size of theear state found in that system. The critical ) (here varies
matrix to be solved, it means that the calculation has to betrongly with . We present in Fig. @) the Im(w) at the
repeated for each type of possible symmetry. point of instability as a function ofy. We see two transitions

We next investigated a higher value 9f »=0.75. The = between dominant modes; somewhere in the range<0z7/5
steady-state curve, as we see in Fig),/rises to a maximum  <0.83, the critical Im{p) becomes zero, as it must if the
and then it comes back around in a lower branch. In theransition is directly connected to the saddle-node behavior
linear stability analysis for this;, Fig. 7(b), we see that the of the steady-state curve. At lowey, e.g., »=0.5, it was
point of instability is exactly at theA maximum; all the about 2.0, as mentioned above. Note that this transition is
points on the backward branch are unstable. This is of courssharp; for example, at=0.83 we still have the mode with
a generic feature of propagating systems. At themaxi-  Im(w)=2 but the Im@)=0 mode goes unstable first. We
mum, the velocity of the solution is indeterminate to linearalso have a transition between dominant modesya.4,
order, implying a zero mode at this point. This zero mode
represents the crossing over into instability of some mode of 0.75—mmmm——————
the system. When we decreagé¢he backward branch comes
back less rapidly, as shown in Fig. 8 fgr=0.5. Clearly at
some smaller this turnaround vanishes altogether, and we
recover the situation ay=0.25, where no maximum is NS
seen. The linear stability analysis for tlye=0.5 reveals that = 0.69
the maximalA is no longer the location of the first instabil-
ity; there is another mode that goes unstable before this
point.

We present in Fig. @ a curve of the critical velocity for
the onset of the instability as a function aef Given the 0.631 i
correlation we found between the critical velocity for insta- O S W R T B T T
bility and the point of maximal for sufficiently larger, we A/AG
extended the graph to higherby calculating the velocity at
the A maximum. The critical velocity for smalf increases FIG. 8. Thev(A) curve for the case dil=4, »=0.5, =15,
with #», as in the piecewise-linear modéhhere here the anda=75.

0.72| b

0.66
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FIG. 9. (a) The critical velocity from the linear stability analysis, normalized by the Rayleigh wave speed, as a funciioDatf are
presented forr=15, a=75, andN=4. (b) Im(w) of the eigenvalue at the critical velocity as a functionspf

the modes having very different Im{. At higher » we
checked the critical Img) by the direct simulatior{again,
see the following sectiorand found that it remains zero.

numerical simulation of the initial value problem. These

after the point of instability. Our system is a hexagonal lat
tice with 2N+ 1 rows and with a finite numbdr of mass

VI. COMPARISON TO SIMULATION

=a+1, and the velocity determined from the timd be-
tween such translation eventssa/At. This criterion of ve-
locity is of course somewhat arbitrary because cracking in

our smooth potential is a reversible process. Note that to

produce a true steady-state crack we need ta/fixso that it

is an integer multiple ofit. Otherwise we would introduce
To check our results, both for the steady-state solution angscijlations inAt due to the incommensurability. Via this

for the linear stability analysis we have implemented a direcbrocedure, we obtained excellent agreenteith four digit

accuracy between the simulated and calculated results for
S[hev(A) relationship. As we increask, we can follow the
“v(A) curve and we obtain from the simulation all the points
f the curve including those around themaximum. When

points in each row. The toE) and bottom rows are constraine e get exactly to the point of instability as predicted from
to have a displacement Ay. The initial conditions for the  the linear stability analysis, additional bond breaking occurs,
displacement and velocity for the lattice were constructethnd the velocity in the simulation drops down below the
from the steady-state solution that we already have foundsteady-state curve.

with the initial crack tip placed./3 from the left edge. We  The numerical simulation can provide a strong check on
solve the equations of motion by an Euler scheme, takinghe details of the stability analysis. We can measure the
Virgt=vtT Zpn(fH0)dt and X, =Xt v gdt. We mea-  eigenfrequency by perturbing one mass point on the lattice in
sured the velocity of the crack by monitoring the bond ex-the vicinity of the crack tip, and measuring the subsequent
tension. The crack was considered to have translated forwatime development of the perturbation. We track the bond
when both bonds connecting a given mass point to its neighextension of the breaking bond at the moment of cracking.

bors across the midline exceeded the critical extension, Because of the finiteness aft this is always somewhat

I I I M I M I N I 1 1 M 1 1 I M 1 I
a) + b) 1
1.0215 —
1.05F 1
o o Simulation o =— Simulation
=} & e Fit =]
B AR | LY 1 g
5 vy B oa S 104
BN 1 04 E
)= éi:;:s?kf'aﬁ.ﬂﬂ\MME
A ojozosf $2 %2 38 52 of % W 4 &
= TR =
=] % =]
2 ¥ 2 103} g
A 1.02 — /A
1.0195 . L . ! . ! . L . L . [ 102, | . 1 1 ] 1 1l
120 140 160 180 200 220 240 80 90 100 110 120 130
X X

FIG. 10. (a) Bond extension at breaking as a function of positicalong the crack surface. HeNe=4, 7=0.25, =15, anda=75.
A/Ag=1.6305,dt=0.125. The fitted curve is 1.0210.0le%%%*sin(0.56%+3.5). (b) Bond extension at breaking as a function of
positionx after the point of instability foN=4, »=0.25, a=15, anda="75.
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B, study crack development. We performed such a study using
MAAAAAAMAAIA IWAAAMAAAANNVAR _ . .
%%EEEI%EX%I%I%I%Iﬁﬁﬁﬁﬁﬁﬂ%ﬁﬁ%;%%%%#ﬁ%?&?& N=20. We see in Fig. 11 three examples of what can happen
e in mode-| cracking after the point of instability, for increas-
DAL SOOI ing values ofA, all for the case of small dissipation. For the
A R A A A smallestA, the crack tip meanders up and down off the mid-
T S A A l | A th K bif i b
‘¢"""""‘""""""""""'#*#*#*#*#*#*#’#'#’9’%'%'%'%‘%'%'fv"‘v'%' ine. For argerA, the crack starts to |urca(§|g. 11(b)],
AR and at the highesh shown bifurcates many times and cre-
(b) © ates a very complex cracking pictUiig. 11(c)]. In all three
FIG. 11. (8 The lattice showing the broken bonds fo¢ of theshe smillr; casesh_thﬁ crack z_arrestsheve-ntually. At large
=20, 7=0.1, «=15, a=75. A/Ag=1.875. (b) A/Ag=2.1875. 7, SUC asp=1.2 and hig efgee Fllg. 12'[. e picture is very
(©) A/Ag=3.125. different. Just above the point of instability the crack bifur-
cates, with the two daughter tips propagating close to the
] ) S edges of the system. These kinds of behavior appear to be
larger thane. This value oscillates, decaying in the stableyery different from that seen in experiment, where there is a

regime, and growing in the unstable regime. The data capajn crack propagating more or less straight in addition to
then be fit to a formAe“*® andw compared to that produced daughter cracks on either side.

by the linear stability analysis. In Fig. (4 we can see the In the mode-Ill case, a crucial point that emerged from the
results for the crack tip and if we perform the fitting, the getajled linear stability study was that the additional cracking
eigenvalue found here lies quite close to the eigenvalugongs were always created behind the crack tip. There, the
found in the linear stability analysis,o=-0.0243 instapility did not divert the main crack, but merely slowed it
+0-5813- o ) down temporarily as energy was diverted to create the side-

hf we instead Iqok at a point in the u.nsta_lble regime, thesebranches[lazq. Here in mode-I cracking, however, after

oscillations look like those presented in Fig.(A0 The 0s-  the point of instability the crack tip itself changes direction

cillating part in the simulation fits well to the imaginary part ang the crack either bifurcates or deviates from the center.
of the linear stability eigenvalue. We note that throughout the

unstable regime we ca_n_dete_ct the presence of the square of VII. SUMMARY AND DISCUSSION

the unstable mode, giving rise to an additional nonlinear

mode with a growth rate two times the value of the real part We have herein studied the steady-state crack, calculating

of the eigenvalue. the v(A) curves both for small and large driving, and for
When we increas@ past the point of instability, the ac- small and large dissipation. For small driving with small dis-

tual crack dynamics of the problem become increasinglysipation, we obtained oscillating curves for all finite indi-

complex. Direct numerical simulation can still be used tocating a substantial velocity gap at small velocity. At large

FIG. 12. The lattice showing the broken bonds fdr 20,
n=1.2, a=15, a=75. A/A;=2.578.
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dissipation, the curves are smooth, and vary significanthhowever, this does not have to be the case, and as we have
with «. At large driving, the maximal velocity exhibits a seen, the Yoffe criterion can be far from being quantitatively
strong dependence on the smoothness and the valaéof accurate. It also is not accord with the ansatz of Eshelby
For large n, there is also a maximal driving as the curve based on energy consideratidi2®]. We also compared our
bends back forming a second branch, and beyond which neteady-state solution and linear stability analysis to direct
steady-state solution exists. For gl] the steady-state solu- numerical simulations, obtaining excellent agreement.

tion undergoes a linear instability. For large this occurs at We plan to extend our work to the case of biaxial loading,
the maximal driving, and is a real instability. For smallthe  \yhere the material is strained in both tk@ndy direction.
instability set in slightly after the maximal velocity, and is a This phenomena describes, for example, a popping of a bal-
Hopf bifurcation. The velocity at the onset of instability ini- |oon as described in Ref23]. We also plan to investigate
tially increases withy, reaches a maximum ap=2 and fyrther the postinstability dynamics. Finally, we hope to use
thereafter decreases for larggr We note that the strong the recently introducef24] continuum regularization of tip
variation of the velocity at the onset of instability with the dynamics(based on the phase-field methdd unravel the

microscopic parameters does not accord with the naive exple that the lattice structure has in determining the form of
pectations based on the Yoffe continuum calculaf@it of a  the allowed instabilities.

change in the direction of maximal stress at some universal

velocity, independent of the microscopic dynamics. For the

piecewise-linear model and small dissipation, where the pro- ACKNOWLEDGMENTS
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